
IJSRSET162168 | Received: 01 February 2016 | Accepted: 11 February 2016 | January-February 2016 [(2)1: 327-332]

© 2016 IJSRSET | Volume 2 | Issue 1 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

DOI : https://doi.org/10.32628/IJSRSET162168

327

Distributed Data Mining: Implementing Data Mining Jobs on
Grid Environments

Vishal Bhemwala, Bhavesh Patel, Dr. Ashok Patel

Department of Computer Science, Hem. North Gujarat University, Patan, Gujarat, India

ABSTRACT

Data mining technology is not only composed by efficient and effective algorithms, executed as standalone kernels.

Rather, it is constituted by complex applications articulated in the non-trivial interaction among hardware and

software components, running on large scale distributed environments. This last feature turns out to be both the

cause and the effect of the inherently distributed nature of data, on one side, and, on the other side, of the

spatiotemporal complexity that characterizes many DM applications. For a growing number of application fields,

Distributed Data Mining (DDM) is therefore a critical technology. In this research paper, after reviewing the open

problems in DDM, we describe the DM jobs on Grid environments. We will introduce the design of Knowledge

Grid System.

Keywords: Data Mining, Knowledge Grid, Distributed Data Mining

I. INTRODUCTION

Due to the logistic organization of the entities that

collects data – either private companies or public

institutions – data are often distributed at the origin.

Such data are typically too big to be gathered at a single

site or, for privacy issues, can only be moved, if ever

possible, within a limited set of alternative sites. In this

situation the execution of DM tasks typically involves

the decision of how much data is to be moved and where.

Also, summaries or other forms of aggregate

information can be moved to allow more efficient

transfers.

In other cases, data are produced locally but due to their

huge volume cannot be stored in a single site and are

therefore moved immediately after production to other

storage locations, typically distributed on geographical

scale. Examples are Earth Observing Systems (EOS), i.e.

satellites sending their observational data to different

earth stations, high energy physics experiments that

produce huge volumes of data for each event and send

the data to remote laboratories for the analysis. In these

cases, data can be replicated in more than one site and

repositories can have a multi-tier hierarchical

organization. Problems of replica selection and caching

management are typical in such scenarios.

The need for parallel and distributed architecture is not

only driven by the data, but also by the high complexity

of DM computations. Often the approach used by the

DM analyst is exploratory, i.e. several strategies and

parameter values are tested in order to obtain

satisfactory results. Also, in many applications data are

produced in streams that have to be processed on-line

and in reasonable times with respect to the production

rate of the data and of the specific application domain.

Using high performance parallel and distributed

architectures is therefore imperative.

II. DISTRIBUTED DATA MINING SYSTEM

By analyzing three different approaches, we have

provided some definitions of DDM Systems. They pose

different problems and have different benefits. Existing

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

328

DDM systems can in fact be classified in one of these

approaches.

Data-Driven: The simplest model for a DDM system

only takes into account the distributed nature of data, but

then relies on local and sequential DM technology.

Since in this system the focus is solely posed in the

location of data, we refer to this model as data-driven.

Figure 1 : Data-Driven Approach for Distributed

Data Mining

In this model, data are located in different sites which do

not need to have any computational capability. The only

requirement is to be able to move the data to a central

location in order to merge them and then apply

sequential DM algorithms. The output of the DM

analysis, i.e. the final knowledge models are then either

delivered to the analyst’ location or accessed locally

where they have been computed.

The process of gathering data in general is not simply a

merging step and depends on the original distribution.

For example data can be partitioned horizontally – i.e.

different records are placed in different sites – or

vertically – i.e. different attributes of the same records

are distributed across different sites. Also, the schema

itself can be distributed, i.e. different tables can be

placed at different sites. Therefore when gathering data

it is necessary to adopt the proper merging strategy.

Model-driven: A different approach is the one we call

model-driven. Here, each portion of data is processed

locally to its original location, in order to obtain partial

results referred to as local knowledge models. Then the

local models are gathered and combined together to

obtain a global model.

Also in this approach, for the local computations it is

possible to reuse sequential DM algorithms, without any

modification. The problem here is how to combine the

partial results coming from the local models. Different

techniques can be adopted, based on voting strategies or

collective operations, for example. Multi-agent systems

may apply meta-learning to combine partial results of

distributed local classifiers.

Figure 2 : Model-Driven Approach for Distributed Data

Mining

The draw-back of the model-driven approach is than it is

not always possible to obtain an exact final result, i.e.

the global knowledge model obtained may be different

from the one obtained by applying the data-driven

approach (if possible) to the same data. Approximated

results are not always a major concern, but it is

important to be aware of that. Moreover, in this model

hardware resource usage is not optimized. If the heavy

computational part is always executed locally to data,

when the same data is accessed concurrently, the

benefits coming from the distributed environment might

vanish due to the possible strong performance

degradation.

Architecture-driven: In order to be able to control the

performance of the DDM system, it is necessary to

introduce a further layer between data and computation.

As show in below Figure, before starting the distributed

computation, we consider the possibility of moving data

to different sites with respect to where they are

originally located, if this turns out to be profitable in

terms of performances. Moreover, we introduce a

communication layer among the local DM computations,

so that the global knowledge model is built during the

local computation. This allows for arbitrary precision to

be achieved, at the price of a higher communication

overhead. Since in this approach for DDM the focus is

on optimized resource usage, we refer to this approach

as the architecture-driven.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

329

Figure 3 : Architecture-Driven Approach for

Distributed Data Mining

The higher flexibility of this model and the potentially

higher performance that it is possible to achieve, are

payed in terms of the higher management effort that it is

necessary to put in place. A suitable scheduling policy

must be devised for the resource selection layer.

Moreover, DM sequential algorithms are not reusable

directly and must be modified or redesigned in order to

take advantage of the communication channel among the

different DM computations.

I. ISSUES IN DDM SYSTEM

Many architectural issues are involved in the definition

of full DDM systems.

 Efficient communications are surely one of the

main concerns.

 Try to optimize existing mechanisms for wide area

data intensive applications.

 Efficient management of the resources available,

namely scheduler components that have to

determine the best hardware/software resources to

execute the DDM.

 Worth mentioning is related to maintenance of the

software components.

Rather third-parties can let the DDM system use their

components, but remain the only responsible for

updating or changing them when needed.

II. DATA AND KNOWLEDGE GRID

A significant contribution in supporting data intensive

applications is currently pursued within the Data Grid

effort, where a data management architecture based on

storage systems and metadata management services is

provided. The data considered here are produced by

several scientific laboratories geographically distributed

among several institutions and countries. Data Grid

services are built on top of Globus, a middleware for

Grid platforms, and simplify the task of managing

computations that access distributed and large data

sources.

The Data Grid frameworks share most of its

requirements with the realization of a Grid based DDM

system, where data involved may originate from a larger

variety of sources. Even if the Data Grid project is not

explicitly concerned with data mining issues, its basic

services could be exploited and extended to implement

higher level grid services dealing with the process of

discovering knowledge from larger and distributed data

repositories. Motivated by these considerations, in a

specialized grid infrastructure named Knowledge Grid

(K-Grid) has been proposed. This architecture was

designed to be compatible with lower-level grid

mechanisms and also with the Data Grid ones. The

authors subdivide the K-Grid architecture into two

layers: the core K-grid and the high level K-grid services.

The former layer refers to services directly implemented

on the top of generic grid services, the latter refers to

services used to describe, develop and execute parallel

and distributed knowledge discovery (PDKD)

computations on the K-Grid. Moreover, the layer offers

services to store and analyze the discovered knowledge.

Figure 4 : General schema of the Knowledge Grid

Architecture.

We concentrate our attention on the K-Grid core

services, i.e. the Knowledge Directory Service (KDS)

and the Resource Allocation and Execution Management

(RAEM) services. The KDS extends the basic Globus

Meta-computer Directory Service (MDS), and is

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

330

responsible for maintaining a description of all the data

and tools used in the K-Grid. The metadata managed by

the KDS are represented through XML documents

stored in the Knowledge Metadata Repository (KMR).

Metadata regard the following kind of objects: data

sources characteristics, data management tools, data

mining tools, mined data, and data visualization tools.

Metadata representation for output mined data models

may also adopt the (PMML) standard.

The RAEM service provides a specialized broker of

Grid resources for DDM computations: given a user

request for performing a DM analysis, the broker takes

allocation and scheduling decisions, and builds the

execution plan, establishing the sequence of actions that

have to be performed in order to prepare execution (e.g.,

resource allocation, data and code deployment), actually

execute the task, and return the results to the user. The

execution plan has to satisfy given requirements (such as

performance, response time, and mining algorithm) and

constraints (such as data locations, available computing

power, storage size, memory, network bandwidth and

latency). Once the execution plan is built, it is passed to

the Grid Resource Management service for execution.

Clearly, many different execution plans can be devised,

and the RAEM service has to choose the one which

maximizes or minimizes some metrics of interest (e.g.

throughput, average service time).

III. DESIGN OF KNOWLEDGE GRID SYSTEM

We describe here the design of KGS. A model for the

resources of the K-Grid, described in below figure, is

composed by a set of hosts, onto which the DM tasks are

executed, a network connecting the hosts and a

centralized scheduler, KGS, where all requests arrive.

Figure 5 : Physical resources in K-Grid.

The first step is that of task composition. We do not

actually deal with this phase and we only mention it here

for completeness. As explained earlier, we consider that

the basic building blocks of a DM task are algorithms

and datasets.

DM components correspond to a particular algorithm to

be executed on a given dataset, provided a certain set of

input parameters for the algorithm. We can therefore

describe each DM components _ with the triple:

A = (A, D, {P})

where A is the data mining algorithm, D is the input

dataset, and {P} is the set of algorithm parameters. For

example if A corresponds to “Association Mining”, then

{P} could be the minimum confidence for a discovered

rule to be meaningful. It is important to notice that A

does not refer to a specific implementation. We could

therefore have more different implementations for the

same algorithm, so that the scheduler should take into

account a multiplicity of choices among different

algorithms and different implementations. The best

choice could be chosen considering the current system

status, the programs availability and implementation

compatibility with different architectures.

The original DM task on the left hand side, is composed

by the application of a first clustering algorithm on a

certain dataset, and then by the application of an

algorithm for association mining on each cluster found.

Finally all the results are gathered for visualization. We

add a node to the top of the graph, which corresponds to

the initial determination of the input dataset. Moreover,

we detail the structure of the actual computation

performed when we chose a specific implementation for

each software component.

In this way, starting from a semantic DAG, we define a

physical DAG, derived from the first one, with all the

components mapped onto actual physical resources. This

process is repeated for all the DAGs that arrive at the

scheduler.

The global vision of the system is summarized in below

Figure. The first step is the creation of the semantic

DAGs from the basic components. This step is in

general performed by several users at the same time.

Therefore we have a burst of DAGs that must be

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

331

mapped on the system. Semantic DAGs queue in

scheduler and wait their turn. When a DAG is processed,

the scheduler builds the physical and determines the best

set of resources where the DAG can be mapped. This is

done by taking into account current system status, i.e.

network and machines load as induced by previous

mappings, and also by verifying that all data

dependencies are satisfied. Referring to the example

above, the scheduler must first schedule the clustering

algorithm and then the association mining.

Figure 6 : Composition of a DM DAG in terms of basic

building blocks: Datasets and algorithms.

Scheduling DAGs on a distributed platform is a non-

trivial problem which has been faced by a number of

algorithms in the past. Although it is crucial to take into

account data dependencies among the different

components of the DAGs present in the system, we first

want to concentrate ourselves on the cost model for DM

tasks and on the problem of bringing communication

costs into the scheduling policy. For this reason, we

introduce in the system an additional component that we

call serialized, whose purpose is to decompose the tasks

in the DAG into a series of independent tasks, and send

them to the scheduler queue as soon as they become

executable w.r.t. the DAG dependencies.

Such serialization process is not trivial at all and leaves

many important problems opened, such as determine the

best ordering among tasks in a DAG that preserver data

dependencies and minimizes execution time.

IV.CONCLUSIONS

We designed a simulation framework to evaluate our

MCT (Minimum Completion Time) on-line scheduler,

which exploits sampling as a technique for performance

prediction. We thus compared our MCT + sampling

approach with a blind mapping strategy. Since the blind

strategy is unaware of actual execution costs, it can only

try to minimize data transfer costs, and thus always

maps the tasks on the machines that hold the

corresponding input datasets. Moreover, it cannot

evaluate the profitability of parallel execution, so that

sequential implementations are always preferred.

Referring to the architectures for DDM systems

proposed, here we are comparing the performance of an

architecture-driven scheduler with those of a data-driven

one (blind). The simple data-driven model turns out to

be less effective in scheduling both communications and

computations of DDM on the K-Grid.

We essentially checked the feasibility of our approach

before actually implementing it within the K-Grid. Our

goal was thus to evaluate mapping quality, in terms of

makespan, of an optimal on-line MCT+sampling

technique. We also assumed to also know in advance

(through an oracle) the exact cost of the sampled tasks,

instead of assuming an arbitrary small constant. In this

way, since our MCT+sampling technique works in an

optimal way, we can evaluate the maximal improvement

of our technique over the blind scheduling one.

We analyzed the effectiveness of a centralized on-line

mapper based on the MCT heuristics, which schedules

DM tasks on a small organization of a K-Grid. The

mapper does not consider node multitasking, is

responsible for scheduling both dataset transfers and

computations involved in the execution of a given task ti,

and also is informed about their completions. The MCT

mapping heuristics adopted is very simple. Each time a

task ti is submitted, the mapper evaluates the expected

ready time of each machine and communication links.

The expected ready time is an estimate of the ready time,

the earliest time a given resource is ready after the

completion of the jobs previously assigned to it. On the

basis of the expected ready times, our mapper evaluates

all possible assignment of ti, and chooses the one that

reduces the completion time of the task. Note that such

estimate is based on both estimated and actual execution

times of all the tasks that have been assigned to the

resource in the past. To update resource ready times,

when data transfers or computations involved in the

execution of ti complete, a report is sent to the mapper.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

332

V. REFERENCES

[1] M. Cannataro, C. Mastroianni, D. Talia, and

Trunfio P. Evaluating and enhancing the use of

the gridftp protocol for efficient data transfer on

the grid. In Proc. of the 10th Euro PVM/MPI

Users’ Group Conference, 2003.

[2] A. Chervenak, I. Foster, C. Kesselman, C.

Salisbury, and S. Tuecke. The Data Grid: towards

an architecture for the distributed management

and analysis of large scientific datasets. J. of

Network and Comp. Appl., (23):187–200, 2001.

[3] I. Foster and C. Kasselman. The Grid: blueprint

for a future infrastructure. Morgan Kaufman,

1999.

[4] Bart Goethals. Efficient Frequent Itemset Mining.

PhD thesis, Limburg University, Belgium, 2003.

[5] W. Allcock, J. Bester, J. Bresnahan, A.

Chervenak, L. Liming, S. Meder, and S. Tuecke.

Gridftp protocol specification. Technical report,

GGF GridFTP Working Group Document, 2002.

[6] R. L. Grossman and R. Hollebeek. Handbook of

Massive Data Sets, chapter The National Scalable

Cluster Project: Three Lessons about High

Performance Data Mining and Data Intensive

Computing. Kluwer Academic Publishers, 2002.

[7] H. Kargupta, W. S. K. Huang, and E. Johnson.

Distributed clustering using collective principal

components analysis. Knowledge and Information

Systems Journal, 2001.

[8] H. Kargupta, B. Park, E. Johnson, E. Sanseverino,

L. Silvestre, and D. Hershberger. Collective data

mining from distributed vertically partitioned

feature space. In Proc. of Workshop on distributed

data mining, International Conference on

Knowledge Discovery and Data Mining, 1998.

[9] M. Marzolla and P. Palmerini. Simulation of a

grid scheduler for data mining. Esame per il corso

di dottorato in informativa, Universita’ Ca’

Foscari, Venezia, 2002.

[10] C. L. Parkinson and R. Greenstonen, editors. EOS

Data Products Handbook. NASA Goddard Space

Flight Center, 2000.

[11] A. L. Prodromidis, P. K. Chan, and S. J. Stolfo.

Meta-learning in distributed data mining systems:

Issues and approaches. In Advances in Distributed

and Parallel Knowledge Discovery. AAAI/MIT

Press, 2000.

