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ABSTRACT 
 

Data mining technology is not only composed by efficient and effective algorithms, executed as standalone kernels. 

Rather, it is constituted by complex applications articulated in the non-trivial interaction among hardware and 

software components, running on large scale distributed environments. This last feature turns out to be both the 

cause and the effect of the inherently distributed nature of data, on one side, and, on the other side, of the 

spatiotemporal complexity that characterizes many DM applications. For a growing number of application fields, 

Distributed Data Mining (DDM) is therefore a critical technology. In this research paper, after reviewing the open 

problems in DDM, we describe the DM jobs on Grid environments. We will introduce the design of Knowledge 

Grid System. 
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I. INTRODUCTION 

 

Due to the logistic organization of the entities that 

collects data – either private companies or public 

institutions – data are often distributed at the origin. 

Such data are typically too big to be gathered at a single 

site or, for privacy issues, can only be moved, if ever 

possible, within a limited set of alternative sites. In this 

situation the execution of DM tasks typically involves 

the decision of how much data is to be moved and where. 

Also, summaries or other forms of aggregate 

information can be moved to allow more efficient 

transfers. 

 

In other cases, data are produced locally but due to their 

huge volume cannot be stored in a single site and are 

therefore moved immediately after production to other 

storage locations, typically distributed on geographical 

scale. Examples are Earth Observing Systems (EOS), i.e. 

satellites sending their observational data to different 

earth stations, high energy physics experiments that 

produce huge volumes of data for each event and send 

the data to remote laboratories for the analysis. In these 

cases, data can be replicated in more than one site and 

repositories can have a multi-tier hierarchical 

organization. Problems of replica selection and caching 

management are typical in such scenarios. 

 

The need for parallel and distributed architecture is not 

only driven by the data, but also by the high complexity 

of DM computations. Often the approach used by the 

DM analyst is exploratory, i.e. several strategies and 

parameter values are tested in order to obtain 

satisfactory results. Also, in many applications data are 

produced in streams that have to be processed on-line 

and in reasonable times with respect to the production 

rate of the data and of the specific application domain. 

Using high performance parallel and distributed 

architectures is therefore imperative. 

 

II. DISTRIBUTED DATA MINING SYSTEM 
 

By analyzing three different approaches, we have 

provided some definitions of DDM Systems. They pose 

different problems and have different benefits. Existing 
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DDM systems can in fact be classified in one of these 

approaches. 

 

Data-Driven:  The simplest model for a DDM system 

only takes into account the distributed nature of data, but 

then relies on local and sequential DM technology. 

Since in this system the focus is solely posed in the 

location of data, we refer to this model as data-driven. 

 
Figure 1 : Data-Driven Approach for Distributed 

Data Mining 

 

In this model, data are located in different sites which do 

not need to have any computational capability. The only 

requirement is to be able to move the data to a central 

location in order to merge them and then apply 

sequential DM algorithms. The output of the DM 

analysis, i.e. the final knowledge models are then either 

delivered to the analyst’ location or accessed locally 

where they have been computed. 

 

The process of gathering data in general is not simply a 

merging step and depends on the original distribution. 

For example data can be partitioned horizontally – i.e. 

different records are placed in different sites – or 

vertically – i.e. different attributes of the same records 

are distributed across different sites. Also, the schema 

itself can be distributed, i.e. different tables can be 

placed at different sites. Therefore when gathering data 

it is necessary to adopt the proper merging strategy. 

 

Model-driven:  A different approach is the one we call 

model-driven. Here, each portion of data is processed 

locally to its original location, in order to obtain partial 

results referred to as local knowledge models. Then the 

local models are gathered and combined together to 

obtain a global model. 

 

Also in this approach, for the local computations it is 

possible to reuse sequential DM algorithms, without any 

modification. The problem here is how to combine the 

partial results coming from the local models. Different 

techniques can be adopted, based on voting strategies or 

collective operations, for example. Multi-agent systems 

may apply meta-learning to combine partial results of 

distributed local classifiers. 

 
Figure 2 : Model-Driven Approach for Distributed Data 

Mining 

 

The draw-back of the model-driven approach is than it is 

not always possible to obtain an exact final result, i.e. 

the global knowledge model obtained may be different 

from the one obtained by applying the data-driven 

approach (if possible) to the same data. Approximated 

results are not always a major concern, but it is 

important to be aware of that. Moreover, in this model 

hardware resource usage is not optimized. If the heavy 

computational part is always executed locally to data, 

when the same data is accessed concurrently, the 

benefits coming from the distributed environment might 

vanish due to the possible strong performance 

degradation. 

 

Architecture-driven: In order to be able to control the 

performance of the DDM system, it is necessary to 

introduce a further layer between data and computation. 

As show in below Figure, before starting the distributed 

computation, we consider the possibility of moving data 

to different sites with respect to where they are 

originally located, if this turns out to be profitable in 

terms of performances. Moreover, we introduce a 

communication layer among the local DM computations, 

so that the global knowledge model is built during the 

local computation. This allows for arbitrary precision to 

be achieved, at the price of a higher communication 

overhead. Since in this approach for DDM the focus is 

on optimized resource usage, we refer to this approach 

as the architecture-driven. 
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Figure 3 : Architecture-Driven Approach for 

Distributed Data Mining 

 

The higher flexibility of this model and the potentially 

higher performance that it is possible to achieve, are 

payed in terms of the higher management effort that it is 

necessary to put in place. A suitable scheduling policy 

must be devised for the resource selection layer. 

Moreover, DM sequential algorithms are not reusable 

directly and must be modified or redesigned in order to 

take advantage of the communication channel among the 

different DM computations. 

 

I. ISSUES IN DDM SYSTEM 

 

Many architectural issues are involved in the definition 

of full DDM systems. 

 

 Efficient communications are surely one of the 

main concerns.  

 Try to optimize existing mechanisms for wide area 

data intensive applications.  

 Efficient management of the resources available, 

namely scheduler components that have to 

determine the best hardware/software resources to 

execute the DDM.  

 Worth mentioning is related to maintenance of the 

software components.  

 

Rather third-parties can let the DDM system use their 

components, but remain the only responsible for 

updating or changing them when needed. 

 

 

II. DATA AND KNOWLEDGE GRID 

 
A significant contribution in supporting data intensive 

applications is currently pursued within the Data Grid 

effort, where a data management architecture based on 

storage systems and metadata management services is 

provided. The data considered here are produced by 

several scientific laboratories geographically distributed 

among several institutions and countries. Data Grid 

services are built on top of Globus, a middleware for 

Grid platforms, and simplify the task of managing 

computations that access distributed and large data 

sources. 

 

The Data Grid frameworks share most of its 

requirements with the realization of a Grid based DDM 

system, where data involved may originate from a larger 

variety of sources. Even if the Data Grid project is not 

explicitly concerned with data mining issues, its basic 

services could be exploited and extended to implement 

higher level grid services dealing with the process of 

discovering knowledge from larger and distributed data 

repositories. Motivated by these considerations, in a 

specialized grid infrastructure named Knowledge Grid 

(K-Grid) has been proposed. This architecture was 

designed to be compatible with lower-level grid 

mechanisms and also with the Data Grid ones. The 

authors subdivide the K-Grid architecture into two 

layers: the core K-grid and the high level K-grid services. 

The former layer refers to services directly implemented 

on the top of generic grid services, the latter refers to 

services used to describe, develop and execute parallel 

and distributed knowledge discovery (PDKD) 

computations on the K-Grid. Moreover, the layer offers 

services to store and analyze the discovered knowledge. 

 

 
Figure 4 : General schema of the Knowledge Grid 

Architecture. 
 

We concentrate our attention on the K-Grid core 

services, i.e. the Knowledge Directory Service (KDS) 

and the Resource Allocation and Execution Management 

(RAEM) services. The KDS extends the basic Globus 

Meta-computer Directory Service (MDS), and is 
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responsible for maintaining a description of all the data 

and tools used in the K-Grid. The metadata managed by 

the KDS are represented through XML documents 

stored in the Knowledge Metadata Repository (KMR). 

Metadata regard the following kind of objects: data 

sources characteristics, data management tools, data 

mining tools, mined data, and data visualization tools. 

Metadata representation for output mined data models 

may also adopt the (PMML) standard. 

 

The RAEM service provides a specialized broker of 

Grid resources for DDM computations: given a user 

request for performing a DM analysis, the broker takes 

allocation and scheduling decisions, and builds the 

execution plan, establishing the sequence of actions that 

have to be performed in order to prepare execution (e.g., 

resource allocation, data and code deployment), actually 

execute the task, and return the results to the user. The 

execution plan has to satisfy given requirements (such as 

performance, response time, and mining algorithm) and 

constraints (such as data locations, available computing 

power, storage size, memory, network bandwidth and 

latency). Once the execution plan is built, it is passed to 

the Grid Resource Management service for execution. 

Clearly, many different execution plans can be devised, 

and the RAEM service has to choose the one which 

maximizes or minimizes some metrics of interest (e.g. 

throughput, average service time). 

 

III. DESIGN OF KNOWLEDGE GRID SYSTEM 

 
We describe here the design of KGS. A model for the 

resources of the K-Grid, described in below figure, is 

composed by a set of hosts, onto which the DM tasks are 

executed, a network connecting the hosts and a 

centralized scheduler, KGS, where all requests arrive. 

 

 

Figure 5 : Physical resources in K-Grid. 

The first step is that of task composition. We do not 

actually deal with this phase and we only mention it here 

for completeness. As explained earlier, we consider that 

the basic building blocks of a DM task are algorithms 

and datasets.  

 

DM components correspond to a particular algorithm to 

be executed on a given dataset, provided a certain set of 

input parameters for the algorithm. We can therefore 

describe each DM components _ with the triple: 

 

A = (A, D, {P}) 

 

where A is the data mining algorithm, D is the input 

dataset, and {P} is the set of algorithm parameters. For 

example if A corresponds to “Association Mining”, then 

{P} could be the minimum confidence for a discovered 

rule to be meaningful. It is important to notice that A 

does not refer to a specific implementation. We could 

therefore have more different implementations for the 

same algorithm, so that the scheduler should take into 

account a multiplicity of choices among different 

algorithms and different implementations. The best 

choice could be chosen considering the current system 

status, the programs availability and implementation 

compatibility with different architectures. 

 

The original DM task on the left hand side, is composed 

by the application of a first clustering algorithm on a 

certain dataset, and then by the application of an 

algorithm for association mining on each cluster found. 

Finally all the results are gathered for visualization. We 

add a node to the top of the graph, which corresponds to 

the initial determination of the input dataset. Moreover, 

we detail the structure of the actual computation 

performed when we chose a specific implementation for 

each software component.  

 

In this way, starting from a semantic DAG, we define a 

physical DAG, derived from the first one, with all the 

components mapped onto actual physical resources. This 

process is repeated for all the DAGs that arrive at the 

scheduler. 

 

The global vision of the system is summarized in below 

Figure. The first step is the creation of the semantic 

DAGs from the basic components. This step is in 

general performed by several users at the same time. 

Therefore we have a burst of DAGs that must be 
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mapped on the system. Semantic DAGs queue in 

scheduler and wait their turn. When a DAG is processed, 

the scheduler builds the physical and determines the best 

set of resources where the DAG can be mapped. This is 

done by taking into account current system status, i.e. 

network and machines load as induced by previous 

mappings, and also by verifying that all data 

dependencies are satisfied. Referring to the example 

above, the scheduler must first schedule the clustering 

algorithm and then the association mining. 

 

 
Figure 6 : Composition of a DM DAG in terms of basic 

building blocks: Datasets and algorithms. 

 

Scheduling DAGs on a distributed platform is a non-

trivial problem which has been faced by a number of 

algorithms in the past. Although it is crucial to take into 

account data dependencies among the different 

components of the DAGs present in the system, we first 

want to concentrate ourselves on the cost model for DM 

tasks and on the problem of bringing communication 

costs into the scheduling policy. For this reason, we 

introduce in the system an additional component that we 

call serialized, whose purpose is to decompose the tasks 

in the DAG into a series of independent tasks, and send 

them to the scheduler queue as soon as they become 

executable w.r.t. the DAG dependencies. 

 

Such serialization process is not trivial at all and leaves 

many important problems opened, such as determine the 

best ordering among tasks in a DAG that preserver data 

dependencies and minimizes execution time.  

 

 

 

 

 

 

 

IV.CONCLUSIONS 
 

We designed a simulation framework to evaluate our 

MCT (Minimum Completion Time) on-line scheduler, 

which exploits sampling as a technique for performance 

prediction. We thus compared our MCT + sampling 

approach with a blind mapping strategy. Since the blind 

strategy is unaware of actual execution costs, it can only 

try to minimize data transfer costs, and thus always 

maps the tasks on the machines that hold the 

corresponding input datasets. Moreover, it cannot 

evaluate the profitability of parallel execution, so that 

sequential implementations are always preferred. 

Referring to the architectures for DDM systems 

proposed, here we are comparing the performance of an 

architecture-driven scheduler with those of a data-driven 

one (blind). The simple data-driven model turns out to 

be less effective in scheduling both communications and 

computations of DDM on the K-Grid. 

 
We essentially checked the feasibility of our approach 

before actually implementing it within the K-Grid. Our 

goal was thus to evaluate mapping quality, in terms of 

makespan, of an optimal on-line MCT+sampling 

technique. We also assumed to also know in advance 

(through an oracle) the exact cost of the sampled tasks, 

instead of assuming an arbitrary small constant. In this 

way, since our MCT+sampling technique works in an 

optimal way, we can evaluate the maximal improvement 

of our technique over the blind scheduling one. 

 

We analyzed the effectiveness of a centralized on-line 

mapper based on the MCT heuristics, which schedules 

DM tasks on a small organization of a K-Grid. The 

mapper does not consider node multitasking, is 

responsible for scheduling both dataset transfers and 

computations involved in the execution of a given task ti, 

and also is informed about their completions. The MCT 

mapping heuristics adopted is very simple. Each time a 

task ti is submitted, the mapper evaluates the expected 

ready time of each machine and communication links. 

The expected ready time is an estimate of the ready time, 

the earliest time a given resource is ready after the 

completion of the jobs previously assigned to it. On the 

basis of the expected ready times, our mapper evaluates 

all possible assignment of ti, and chooses the one that 

reduces the completion time of the task. Note that such 

estimate is based on both estimated and actual execution 

times of all the tasks that have been assigned to the 

resource in the past. To update resource ready times, 

when data transfers or computations involved in the 

execution of ti complete, a report is sent to the mapper. 
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